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Review Article 

ELECTRONIC CORRELATION FUNCTIONS 
IN LIQUID METALS 

N. H. MARCH* 

Oxford University , Ox f brd. Englund 

(Received 29 December 1997) 

T o  determine experimentally the three pair correlation functions gi, ( r ) .  gie(r) and gee(r) in 
a pure liquid metal, i denoting ions and e electrons, requires three independent 
diffraction measurements. A brief review will be given in this difficult area, but progress 
is quite slow. One can make headway by confronting available experimental diffraction 
data with the results of computer experiments, and in particular on gie(r).  This will be 
illustrated with specific reference to recent computer simulations on liquid Mg and liquid 
Bi. For Mg. analytic modelling is also possible and this will be discussed. 

Quite independently, computer experiments have recently appeared which describe the 
effects of isochoric heating on dense fluid hydrogen over a wide temperature range. This 
prompts again reference to analytic models, both caged atomic and molecular hydrogen 
being considered. Finally, though the electrical conductivity of the H plasma above has 
not yet been studied, a brief discussion of a possible mechanism of electronic transport in 
strongly coupled plasma will be presented. 

Keywords: Two-component plasma; electron ~ ion correlation function: dense fluid 
hydrogen 

1. INTRODUCTION 

Substantially more than two decades ago, Egelstaff ef al. [ I ]  drew 
attention to the importance of extracting electronic correlation 
functions in liquid metals by combining X-ray, electron and neutron 
diffraction experiments. Then, for example, on liquid Mg, to be 
discussed at some length below, which can be considered as a two- 

* Address for correspondence: 6, Northcroft Road, Egham, Surrey TW20 ODU, U.K.  

419 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
0
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



480 N. H. MARCH 

component system (March and Tosi [2]) of ions Mg+ + and electrons 
e , one could, at least in principle, extract the three partial structure 
factors S,,(q), Sn,(q) and S,,(q), where n denotes nucleus and v is short 
for valence electrons. In early work (Watabe and Hasegawa [3], 
Chihara [4]), it was demonstrated that these three partial structure 
factors were related to the valence, say z ,  of the liquid metal by 

- 

while, from fluctuation theory, the nuclear structure factor S,,(O) at 
q = 0 is given by (see e.g., Faber [ 5 ] ) :  

rzi being the number of ions per unit volume, kB T the thermal energy 
and KT the isothermal compressibility. These relations (1)-(3) will be 
important in some of the models to be discussed below (March and 
Tosi [ 6 ] ) .  

In Section 2, the relation of the above three partial structure factors 
to X-ray scattering will be briefly summarized, following Egelstaff et 
al. [l]. However, it is important to note here that it has already been 
assumed in the above structural description that the electrons in a 
liquid metal such as Mg or Bi can be usefully classified into core and 
valence categories. In what follows, the core electrons will be assumed 
rigidly attached to the nuclei. Only the valence electrons therefore are 
described by the partial structure factors S,,(q) and S,,(q), and these 
two quantities will clearly enter the intensity of X-ray (and electron) 
diffraction from such liquid metals. However, the third partial 
structure factor, S,,(q), is directly accessible via neutron scattering. 
One recent neutron experiment which can be cited in the above context 
is on liquid K just above its freezing point (Johnson et al. [7]). 

2. X-RAY SCATTERING FROM A LIQUID METAL 

The X-ray scattering intensity Z,(q)/N per atom is essentially the 
Fourier transform of the density -density correlation function 
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ELECTRONIC CORRELATIONS IN LIQUID METALS 48 1 

r')dr dr' (4) 

Effecting the core-valence separation discussed above by writing 
p = pc f p,,, one can rewrite Eq. (4) in the form 

where F denotes Fourier transform. But as mentioned the core 
electrons are assumed 'tied' to nuclei and hence one has 

In Eqs. (5) and (6) , f , , (q)  denotes the scattering factor of the core, i.e., 
of Mgf + or Bi'" for these two liquid metals to be treated further 
below. A similar expression for electron scattering has been written 
down by Egelstaff et al. [I]. 

2.1. Diffraction and Computer Experiments Relating 
to Electron-Ion Correlations 

Direct experimental extraction of Sn,(q) from diffraction measure- 
ments has so far proved difficult and progress has been therefore slow. 
The interested reader may refer to the review by Tamaki [8]; see 
however Steeb et al. [9]. We shall refer to such efforts again below, 
when we report, and analyze further, computer studies of electron ~ 

ion correlations. 
We note, however, that for real progress using diffraction 

experiments it  is essential to have high accuracy measurements using 
neutrons, X-rays and electrons on the same liquid metal under similar 
thermodynamic conditions. A full comparison of X-ray and neutron 
measurements on liquid K near freezing is presented by Johnson e f  a/. 
[7] but unfortunately, to our knowledge, electron diffraction data is 
not available on this liquid metal near freezing at the time of writing. 
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482 N. H. MARCH 

3. COMPUTER SIMULATION ON ELECTRON - ION 
INTERACTION IN LIQUID MG 

Though experimental diffraction studies to extract the electron - ion 
partial structure factor S,,(q) remain very difficult quantitatively, a 
major step forward in this general area has been taken by de Wijs et al. 
[lo]. These workers follow Car and Parrinello [ l l ]  in combining 
molecular dynamics and density functional theory. They have, 
essentially, studied the valence electron density in liquid Mg (and 
also in liquid Bi, to be discussed also briefly below). 

First of all, their calculated nuclear - nuclear structure factor S,,(q) 
can be compared with the measured S,,(q) for liquid Mg under 
comparable thermodynamic conditions. Experiment and theory are in 
good agreement. 

3.1. Analytic Modelling to Expose Origin of Main Features 
in Electron-Ion Structure Factor S&) 

On inspection of the computer data of de Wijs et al. [lo], one sees that 
there is antiphase behaviour between S,,(q) and S,,(q) at the principal 
peak of the structure factor. In the modelling of March and Tosi [6],  
referred to as MT, it becomes quite clear what is the origin of this 
antiphase characteristic. Thus, MT give a formula for S,,(q) which 
they have used to analytically model the ratio Snv(q)/S,,(q). The study 
of this ratio is motivated by Eq. (l), which relates the long wavelength 
limit of this quantity to the valence z(2 for liquid Mg near its freezing 
point). MT have then modelled S,,(q)/S,,(q) using the simplest 
possible input. This is (i) a pseudopotential v(k) representing the 
electron-ion interaction in Mg and (ii) a dielectric function E ( q )  
accounting for metallic screening. No attempt was made to use refined 
choices. MT employ an Ashcroft pseudopotential for v(q)  character- 
ized by a valence z = 2 and an Ashcroft radius already available in the 
literature. These workers simply used the Thomas-Fermi dielectric 
function 
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ELECTRONIC CORRELATIONS IN LIQUID METALS 483 

where the Thomas-Fermi inverse screening length qTF is determined 
from the Fermi wave number tkf by 

The main features of the computer data of de Wijs et al., are then to 
be understood on the basis of the MT model summarised below. Their 
result employed is 

The Ashcroft empty core form of v(q) is 

The literature value of R, = 1 . 3 9 ~  was adopted for Mg, with z = 2 
near freezing. The antiphase behaviour of S,,(q) with respect to the 
nuclear structure factor S,,(q) is due to the fact that the node in the 
pseudopotential occurs at  a q value inside that characterizing the first 
peak in S(q). Though no attempt was made to adjust the modelling to 
be fully quantitative, in fact all the essential features Sn,(q) are already 
clear. The ratio S,,(q)/S,,,(q) according to the modelling of M T  is 
displayed in Figure 1. We want to stress that in liquid Mg, the use of 
weak electron - ion interaction is valid. 

To add a few comments relating to the comparison of the modelling 
shown in Figure 1 with the computer investigations on Mg, the node is 
at  2.1 k’ in the computer results: nearly predicted correctly by the 
MT model. The deepest value of the ratio shown in -0.13 whereas 
from the computer study of de Wijs et al., it is -0.08. 

MT also plot the same ratio, but now directly from the computer 
results for liquid Bi, and their results are shown in Figure 2. The 
extrapolated ratio from the data of de Wijs et al. [lo] passes 
satisfactorily through the long wavelength limit z ‘ I 2  with z = 5 for 
liquid Bi, as it must from the theoretical result (1) representing perfect 
screening, or equivalently the fact that long-range electric fields cannot 
exist in a metallic medium. 
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FIGURE 1 Ratio of electron-ion to nuclear-nuclear partial structure factors for 
liquid Mg near freezing, following March and Tosi [6]. Note that ratio a t  q = 0 is : ' I 2 .  
with valence z = 2 for Mg. Curve shown is constructed from Eq. (9) with v ( q ) ,  the 
electron-ion pseudopotential as in Eq. (lo), with the Ashcroft radius 
R, = 1.394  : a0 = h2/me2.  The Thomas-Fermi dielectric function in Eq. (7) was used 
in constructing curve in Figure. All the main features of the computer studies of de Wijs 
et al. [lo] are apparent in the modelling displayed in this figure, with no adjustable 
parameters, as the literature value of R, was adopted. 

To sum up briefly, the assumption of weak electron-ion interac- 
tion, plus the simplest possible choices of electron - ion pseudopoten- 
tial v(q) in Eq. (10) and dielectric function E ( q )  in Eq. (7) satisfactorily 
account for the main features of the computer data of de Wijs et al. 
[lo] on liquid Mg near freezing, as demonstrated in the work of March 
and Tosi [6]. However, such a simple treatment cannot be expected to 
work for liquid Bi, for though Hall effect measurements show that 
z = 5 ,  crystalline Bi is a semimetal and this testifies to the fact that 
there the electron- ion interaction cannot be assumed weak. 

de Wijs et al. [lo] in their important study make contact with the 
diffraction data of Tamaki et al. [12]. Especially for Bi, it is a challenge 
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FIGURE 2 Similar to Figure 1 except that no model was invoked, the ratio of 
structure factors shown for liquid Bi being constructed by March and Tosi [6] directly 
from the computer data of de Wi.js et al. [lo]. There is no difficulty in extrapolating the 
computer results to pass through the theoretical limit z”’, given in Eq. ( I )  with z = 5. 

for the experimentalist to see whether a quantitative account of Figure 
2 can be obtained directly from experiment. 

We conclude this section with a few brief comments on electron- 
electron correlations. It is tempting, from Eq. (6) for the X-ray 
intensity, to try to exploit the fact that the node in S,,(q) for Bi at  
around 2.1 A-’ should ‘expose’ the electron-electron term at this 
value of q. Again, it is a challenge to experimentalists to see whether 
there one can establish with certainty a difference between I , ( q ) / N  and 
f : ( q )  Snn(q) ,  as required by Eq. (6). This is presumably going to 
require considerable accuracy not only in the neutron and X-ray 
experiments needed for S,,(q) and I,(q) respectively but also in the 
quantum chemical calculation of the ‘core’ scattering factors .f,(q). It 
remains of considerable interest to see if electron - electron correla- 
tions can be exposed by such diffraction studies. Refinement of 
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486 N. H. MARCH 

electron diffraction measurements (Brah et al. [13, 141) seems also a 
matter of high priority in this area. 

We turn next to discuss electronic properties in dense fluid 
hydrogen [ 151. 

4. COMPUTER SIMULATION OF DENSE FLUID HYDROGEN 
UNDER ISOCHORIC HEATING 

To briefly introduce this section on dense fluid hydrogen, we begin 
by writing the internal energy E, which involves both electronic 
kinetic energy K and the kinetic energy of the ions Kion. The result is 
(see e.g. ,  March and Tosi [16]): 

In Eq. (1  l), the three partial radial distributions are evidently involved. 
The bare ion-ion potential is denoted by vir(r),  while C(r) is the 
electron -ion interaction potential. 

The computer simulation experiment of Magro et al. [ 151 has yielded 
the electronic kinetic energy K over a wide range of temperature T,  for 
three densities. With the usual plasma parameter rs measured in units 
of the Bohr radius ao, related to the mean electron density p by 

Figure 3 of the article by Magro et al. plots K vs T for r, = 1.86, 2.0 
and 2.2. 

In the low temperature regime, one has molecular H2 fluid whereas 
in the very hot assembly one has an atomic fluid. March and Tosi [17] 
attempted to gain insight, via admittedly somewhat crude models, into 
the variation of K with r, (at constant temperature T say) in both the 
atomic and the molecular fluid regions. 
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ELECTRONIC CORRELATIONS IN LIQUID METALS 487 

4.1. H Atom in Cage 

March and Tosi [17], in the high T regime of the computer results of 
Magro et al., have analyzed the ground-state electronic kinetic energy 
K by using the model of a H atom enclosed by a spherical boundary of 
radius a with the proton at the centre. The wave function of the electron 
is put to zero at  a. Using 2s and 3s wavefunctions (+,,Jr)), each 
truncated at their innermost node, March and Tosi have plotted K(a). 

Subsequently, the writer has noted the ‘boundary perturbation 
theory’ developed by Barton et al. [18]. This allows one to calculate 
analytically the change A K  = K(a) - K ( ~ o ) ,  where K ( m )  is the usual H 
atom result 

as follows from the usual hydrogenic 1s level plus the virial theorem. 
Writing 

u ( r )  = r$qO(r,a = 00) (14) 

Barton et al. show first that one can write the energy change A E ( a )  
entirely in terms of quadratures on the free space (a = 00) quantity 
u(r). Their result is given by 

Inserting +,o(r)  into Eqs. (14) and (15), one finds 

Now one invokes the virial theorem in the form 

ad A E  
da 

A K + A E = - -  

which relates A K(a) and A E(a). Combining therefore Eqs. (16) and 
(1 7) yields the desired result 
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488 N. H. MARCH 

This form (18) at small (ao/a) fits well between the exact results of 
March and Tosi [17] from the 2s and 3s truncated wave functions and 
the value zero at a = 00. The truncated 2s wave function at its node 
2ao corresponds to the Magro calculation for r, = 2. The cage model 
H gives K(2ao) = 2.8Ryd which is substantially larger than the 
computer value of 1.6 Ryd. Similarly for r,y = 1 .86u0, the model gives 
N 0.2Ryd, while the computer value is nearer 0.05Ryd. The cage 
model therefore substantially overemphasizes the effect of compres- 
sion on fluid hydrogen. This is confirmed by March and Tosi [ 171 by 
results obtained by softening the (infinite) barrier of the cage model. 

4.2. H2 Molecule With Electron- Electron Interactions, in 
Appropriate Cage 

Using the careful study for LeSar and Herschbach 1191, including 
electron - electron correlations, March and Tosi have repeated the 
calculations of K vs volume for the H2 molecule in a spheroidal cage. 
Again, the gist of the variation found in the computer experiment is 
given by the model, but again the effect of compression is over- 
emphasized by the infinite barrier model. As well as the kinetic energy, 
the internuclear distance of H2 as a function of rs is given in 
semiquantitative form by the cage model. 

We now turn to the question of electrical conductivity, which was 
not reported on by Magro et al. [15] for dense fluid hydrogen in the 
final section. 

5. MODEL OF ELECTRICAL CONDUCTIVITY 
OF STRONGLY COUPLED PLASMA 

The idea presented in an earlier study (March and Tosi [20] ) of the 
electrical conductivity of Cu plasma was to start from the Nernst- 
Einstein relation between mobility p and electronic diffusion 
coefficient, D, namely 
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ELECTRONIC CORRELATIONS IN LIQUID METALS 489 

where kBT is the thermal energy associated with temperature T. 
Writing the conductivity in terms of the electron density n, through 

one finds immediately using Eq. (19) 

Rearranging Eq. (21) so that Dn2I3 0: D/(length)2 appears, as in the 
previous work, (March and Tosi [20]) Eq. (21) becomes 

For monovalent Cu, Dn3I3 = Dnft3 turned out to be independent of 
the thermodynamic state in the strongly coupled plasma regime 
(March and Tosi [20], DeSilva and Kunze [21]). 

This has therefore motivated a plot for W plasma of the quantity Y 
defined by 

as a function of temperature T. Note that Y differs from the left-hand 
side of Eq. (22) by a factor proportional to the cube root of the 
effective valence 2. 

While a and n j  are well specified in the paper of Kloss et al. [22] on 
tungsten plasma there is some question as the choice of data for the 
temperature. Thus, in the upper part (a) of their Figure 5, they plot 
measured temperature of the wire vs ni for a wire explosion with lowest 
and highest energy input. Data has been used from both these curves. 
The product Y = ~ n i ” ~  T turns out in both cases, even though there is 
considerable scatter at  least partly coming from reading off of the 
data, to decrease substantially with increasing temperature T. The 
above argument, based on Eqs. (19)-(23), would interpret this 
decrease as reflecting the variation of Z1’3 with temperature. 

Under ‘normal’ conditions, Slater [23], for example, records the 
outer electronic configuration of the W atom as sd’, suggesting, as 
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490 N. H. MARCH 

noted also by Kloss et al., that near the melting point Z = 6. Likalter 
in a private communication to Kloss et al., has proposed 2% 3 at the 
critical point, and for the maximal observed expansion in their work 
Kloss et al., propose 2 x 1 .  These values are not inconsistent with the 
curves given in Figures 1 and 2 of March and Tosi [24] bearing in mind 
the substantial scatter among the points plotted. 

To sum up, the earlier interpretation offered from the results on Cu 
plasma obtained in the conductivity measurements of DeSilva and 
Kunze [21] has been shown by March and Tosi [24] to permit the 
extraction of the effective valence 2 as a function of temperature for W 
plasma from conductivity measurements. The results are quite 
compatible with the proposals made by Kloss et al. [22]. 

Subsequently, and in a somewhat different context, the same model 
as above has been used to interpret conductivity data on double- 
walled C nanotubes (March, Alonso and Rubio [25]). 

6. SUMMARY AND FUTURE DIRECTIONS 

The advent of computer studies such as those of de Wijs et al. [lo] on 
liquid Mg and Bi near freezing and Magro et al. [I51 on isochoric 
heating of dense fluid H over a vast range of temperature has greatly 
aided progress in the two-component theory of liquid metals. While 
Mg and Bi in the liquid state studied by de Wijs et al., are undoubtedly 
good metals, it remains to be seen what is the electrical conductivity 
behaviour of dense fluid hydrogen over the range of thermodynamic 
states studied by Magro et al. [15]. 

However, it is highly relevant in the above context to record that 
shock wave measurements of Weir et al. [26] on liquid H a n d  liquid D 
have unambiguously established that an insulator-metal transition 
occurs at high temperatures and at a pressure N 1.5 megabar. The 
point we need to stress here is that in the metallic phase observed to 
date there is coexistence with chemical bonding. Though the actual 
electrical resistivity is comparable with that observed in the heavy 
alkali liquid metal Rb (see Weir et al. [26]), the behaviour of liquid H 
and D seems more akin to that found in solid iodine, though in a much 
more accessible thermodynamic range in this latter material. Here, 
beyond question, the experimental electrical resistivity measurements 
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ELECTRONIC CORRELATIONS IN LIQUID METALS 49 1 

of Drickamer [27] show a metallic phase at - 150 kbar, while at  the 
same time diffraction experiments clearly reveal a 'molecular' metal 
with a well defined I2 bond length. These two observations have been 
reconciled in the study of Siringo et al. ([28]; see also [29]). The 
mechanism of the metal-insulator transition here is energy band 
overlap, the gap in the insulating/semiconducting phase being 
gradually closed by application of laboratory pressures. 

However, it must be emphasized that in the experiments of Weir et 
al. [26] the high temperatures are playing an important role in the 
insulator-metal transition in dense fluids H and D. These authors, in 
fact, conjecture that in the cold solids the applied pressure will 
probably need to be increased to the order of 3.5 megabar. 

The work on H and D certainly needs following with both 
experiment and theory, particularly on electrical conductivity. The 
Nernst-Einstein approach of Section 5 would suggest electronic 
hopping as a possible mechanism here. One important consequence 
of that would be that the high-frequency conductivity a(w) should 
have power law behaviour, of the form D proportional to W" with the 
exponent n N 0.8. This is to be contrasted with Drude-Zener type 
behaviour of the form D(W) = c~(O) / [ l  + w ~ T ~ ] ,  with T the relaxation 
time. For w r >> 1 this leads to ~ ( w ) a  wP2. 

To return finally to the matters raised in the Introduction, 
systematic work on one specific liquid metal is much needed. Since 
accurate X-ray and neutron experiments now exist on liquid K near 
freezing, this seems an obvious liquid metal on which to study electron 
diffraction. In parallel, it would be of interest if the computer 
simulation study paralleling those on liquid Mg and Bi could also be 
carried out on liquid K near freezing. 
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